The Role an Urban Level Spreader may play in the CAM process: BMP Monitoring in the Forum Nature Area

- L. WISEMAN, E. INNISS University of Missouri
- L. HOOPER Boone County, Missouri
- T. WELLMAN City of Columbia, Missouri

Hinkson Collaborative Adaptive Management (CAM) Overview

Hinkson Creek placed on Clean Water Act 303(d) list 1998 - unknown pollutant TMDL not issued within 10 years → lawsuit filed MDNR/EPA made stormwater surrogate for pollution in TMDL MS4 Partners (University/County/City) objected MDNR, EPA, and MS4 Partners agreed to Collaborative Adaptive Management process

Hinkson Collaborative Adaptive Management (CAM) Overview

- EPA, DNR, City, County, and University agreed to address Hinkson Impairments through Collaborative Adaptive Management (CAM) in 2011
 - · CAM is well suited to uncertainties of this situation
 - CAM is used in other environmental applications

This was the first CAM process implemented to address impairments in lieu of a TMDL

Hinkson CAM includes 3 Groups

- Stakeholder Committee
 - Made up of local interested parties to steer the process
- Science Team
 - Includes USGS, Department of Conservation, MU, DNR, EPA, Private Consultant To advise and make recommendations regarding technical issues
- Action Team
 - MS4 Partners (City, County, MU), Boone County Regional Sewer District, MoDOT
 To recommend how to get things done

CAM / MS4 partners - projects

- Scientific studies
- Infrastructure improvements
- Best management practices

Premise

The Forum Nature Area monitoring project is intended to evaluate the stormwater level spreader BMP for improving the health of a watershed tributary to Hinkson Creek. It is a five-year project currently in the second year of monitoring.

Monitoring - Goals

Gather data for each rain event

Characterize how the site reacts to rain events

Evaluate effectiveness of the level spreader design in improving site hydraulics

Determine other locations where a similar design may be useful

Future Sites and Uses

If the water balance for the site can be determined, then new sites can be selected to optimize infiltration, evapotranspiration, and other pathways for water into the riparian buffer

Lessons Learned

- 1. Spend more time modeling
 - Continuous simulation would be best
 - In single event modeling use many more types of storms and durations
- 2. Pay more attention to diverter
- 3. Ensure downstream side of lip helps spread water
 - Construction created preferential flow paths
 - Use Gravel to keep water from concentrating as long as possible while minimizing disturbance
- 4. Flowable fill seems to be acceptable foundation
- 5. Area upstream of diverter and level lip is significant

